Welcome to the Solar Eranet Cofund Competition Brokerage Webinar

Webinar Start Time: 11:00 GMT

All viewers will be MUTED throughout the webinar to avoid background noise

Any questions can be typed inside the chat box – please keep concise
Presenting the Cofund Joint Call

Brokering webinar
12th December 2016

Presented by Alice Goodbrook, Innovate UK
Todays Brokering Webinar

• Quick reminder of co-fund call and key dates
• 4 minute presentations (and time for questions)
 1. Parisa Sehati - SP Technical Research Institute of Sweden
 2. Mauro Caccivio – SUPSI
 3. Zbigniew Motyka – GIG
 4. Lina L. Sartinska - Institute for Problems of Materials Science, NASU
 5. Nigel Boat
 6. Trevor Wakefield – Perfect Solar Company Ltd
 7. Zayda Donaire - NEMATIA
 8. Philippe Stolz - Treeze Ltd
 9. Kerstin Täschner - Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
 10. Piotr Karwowski - Instytut Energetyki Odnawialnej
 11. Ali Serpenguzel - Koç University Micro photonics Research Laboratory
 12. Przemysław Mroczkowski - Institute for Innovative Energy Development

• Close
Main Principles

• Industry driven / relevant PV and CSP projects, minimum ~TRL 4/5⁺

• Minimum consortium requirements:
 – 2 partners with at least 1 partner from industry
 – And 2 different countries officially participating in the Cofund joint call (relevant organisations from other countries may participate with their own funding)

• Duration maximum 36 months

• National funding, criteria and priorities vary from country to country (national rules). Some funding bodies do not participate in all topics.

→ Project partners must get in touch with their national contact points as projects are funded at national or regional levels following individual requirements.

• Time table:
 → Preproposals: 20 February 2017, highest quality invited to full stage.
 → Full proposals: 15 June 2017
 → Start of transnational projects funded: end of 2017 / early 2018
Participating Countries
Funding Budgets

<table>
<thead>
<tr>
<th>Country, Funding Party</th>
<th>Funding [EUR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria, KLIEN</td>
<td>1‘000‘000</td>
</tr>
<tr>
<td>Cyprus, RPF</td>
<td>400‘000</td>
</tr>
<tr>
<td>France, ADEME</td>
<td>300‘000</td>
</tr>
<tr>
<td>Germany, Jülich</td>
<td>3‘000‘000</td>
</tr>
<tr>
<td>Netherlands, RVO</td>
<td>500‘000</td>
</tr>
<tr>
<td>Poland, NCBR</td>
<td>500‘000</td>
</tr>
<tr>
<td>Spain, CDTI</td>
<td>1‘330‘000</td>
</tr>
<tr>
<td>Spain, MINECO</td>
<td>350‘000</td>
</tr>
<tr>
<td>Sweden, SWEA-STEM</td>
<td>860‘000</td>
</tr>
<tr>
<td>Switzerland, DETEC</td>
<td>1‘000‘000</td>
</tr>
<tr>
<td>Turkey, Tübitak</td>
<td>3‘500‘000</td>
</tr>
<tr>
<td>UK, Innovate UK</td>
<td>£ 445‘000</td>
</tr>
</tbody>
</table>

National funding budgets ~ MEUR 13,3

+ EC top up ~ MEUR 5,9

= Total funding budget up to ~ MEUR 19,2
Topics

A) Innovative and low-cost PV manufacturing

B) Advanced PV products and applications

C) PV system integration

D) CSP cost reduction & system integration

TRL 1 Basic principles observed
TRL 2 Technology concept formulated
TRL 3 Experimental proof of concept
TRL 4 Technology validated in lab
TRL 5 Technology validated in industrially relevant environment
TRL 6 Technology demonstrated in industrially relevant environment
TRL 7 System prototype demonstration in operation environment
TRL 8 System complete and qualified
TRL 9 Actual system proven in operational environment / competitive manufacturing
4 Minute Presentations

1. Parisa Sehati - SP Technical Research Institute of Sweden
2. Mauro Caccivio – SUPSI
3. Zbigniew Motyka – GIG
4. Lina L. Sartinska - Institute for Problems of Materials Science, NASU
5. Nigel Boat
6. Trevor Wakefield – Perfect Solar Company Ltd
7. Zayda Donaire - NEMATIA
8. Philippe Stolz - Treeze Ltd
9. Kerstin Täschner - Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
1. Parisa Sehati - SP Technical Research Institute of Sweden
Contact details
• Organisation: SP Technical Research Institute of Sweden
• Contact name: Parisa Sehati
• Country: Sweden
• Email: parisa.sehati@glafo.se
• Telephone: +46-10-516 63 58

Organisational profile
• The largest research institute in Sweden
• Generate value and sustainable development throughout the innovation chain
• www.sp.se

What challenge area is your project idea focused on for the SOLAR-ERA.NET Cofund Joint Call?
A) Innovative PV manufacturing issues
Project idea

• **Summary**

✓ Many roofs are: too small, too shaded, not optimally oriented for PV-installation

✓ Concentrated Solar Power (CSP) applications limited: space & cost

✓ Integration of CPV units into the facades: micro-scale array of CPV!

✓ CPV: more power from smaller PV i.e., smaller environmental footprint!

• **Needed expertise**

✓ Architect expertise

✓ Façade producer

✓ Market viability assessment in southern Europe
2. Mauro Caccivio – SUPSI
Contact details
- Organisation: SUPSI
- Contact name: Mauro Caccivio
- Country: Switzerland
- Email: mauro.caccivio@supsi.ch
- Telephone: +41 79 521 80 09

Organisational profile
- Photovoltaic research at the Institute for Applied Sustainability to the Built Environment (ISAAC-SUPSI) started more than 30 years ago with the installation of the first grid-connected PV plant in Europe. The cooperation with national and international institutes and industry partnerships put the basis for the continuous improvement in know how, with a focus on the thematics of PV modules indoor and outdoor characterization, PV systems reliability, BIPV and smart grid integration. The SUPSI PVLab offers a wide range of services for R&D and industry, with IEC standard and customized testing procedures, going from product characterization to ultra accelerated testing.

What challenge area is your project idea focused on for the SOLAR-ERA.NET Cofund Joint Call?
Main focus is on ”PV system integration” and “Advanced PV products and applications” with stress on reliability and safety issues
1st Project idea

• The idea is to continue the tradition of TISO, the first grid-connected PV plant in Europe, now 34 years old, with a new pilot & demonstration plant at 1500V, with high efficiency modules and battery storage.

• The cost reduction in terms of balance of system for higher efficiency panels and higher system voltage faces the challenges of reliability and safety.

• New IEC PV standards published in 2016 put further stress on 1500V product certification.

• CHALLENGES
 – PID phenomena harshened by the higher voltage
 – High voltage batteries to reduce the power transmission losses
 – Arc injection safety problems

• Opportunity to experiment up to 3000V on separate strings with different technologies.

• We look for:
 – Innovative, high efficiency PV module manufacturers
 – Battery system suppliers
 – Research institutes with focus on reliability and system integration
2nd Project idea

• The idea is to use the first photovoltaic catamaran as a moving lab for accelerated testing and verification of reliability of PV modules in marine environment.

• The challenges and experiences during the first five years of operation of MS Tûranor PlanetSolar give a chance to test and develop new products able to survive to harsh marine environment with high yields and highest safety.

• We look for:
 – Innovative, high efficiency PV module manufacturers
 – Innovative Junction box, wires and connectors manufacturers
 – Research institutes with focus on reliability and system integration
3. Zbigniew Motyka - GIG
Clean energy from road acoustic barriers infrastructure planning and development

CEFRABIPAD1

Zbigniew Motyka, GIG, Katowice, Poland
12th December online brokering session
Contact details
• Organisation: Główny Instytut Górnictwa
• Contact name: Zbigniew MOTYKA
• Country: Poland
• Email: zmotyk@gig.eu
• Telephone: +48 32 259 22 36

Organisational profile: www.gig.eu
• Environmental engineering
• Sustainable energy technologies
• Mining and Geoengineering
• Główny Instytut Górnictwa is mainly involved in activities on the implementation of the principles of sustainable development in the field of energy technologies and the use of renewable energy sources, especially those in the area of Clean Coal Technologies (CCT).

Challenge area of CEFRABIPAD1 project idea is focused on for the SOLAR-ERA.NET Cofund Joint Call:
C) PV system integration (both with regional power grid, as well as with a road infrastructure)
If we would decide to replace standard Noise Road Barriers (NRBs) with ones incorporating solar energy PV Panels (PVPs), just as we are starting placing solar panels on roofs of our buildings, the surplus total power (of heat and electricity) could be generated, which could be used, e.g. to powering docking stations for electric cars.

• The aim of the CEFRABIPAD1 Project is implementation of such vision on a basis of the currently best achievable technical and economical solutions.

• Hybrid systems of PV systems within planned and existed NBRs infrastructure will be developed and demonstrated.

• PV systems integration both with road infrastructure, Intelligent Transport Systems as well as the regional power grid will be targeted.

• Heavy duty hybrids of NRBs with PVPs for use at mining or seismic activity grounds, as well as at harsh climatic zones will be developed.

• The modelling and implementation of dispersed along roads PV nets integrated with NRBs both for East-West and North-South road orientations will be considered.

• All interested researchers are invited to take part in this project proposition preparation and following possible common application to the nearest grant within SOLAR-ERA.NET Cofunf Joint Call.
4. Lina L. Sartinska - Institute for Problems of Materials Science, NASU
Contact details

Organisation: Frantsevich Institute for Problems of Materials Science, NASU
• Contact name: Lina L. Sartinska
• Country: Ukraine
• Email: lisart@ukr.net
• Telephone: +380 (0) 44-3622639

Organisational profile http://www.materials.kiev.ua/science/home.jsp

Nanostructured Emission Materials for Solar Energy Conversion into Electricity
Project idea

Solar energy is clean and renewable but has a low flux density around 1 kW/m². The lack of a continuous and reliable power supply reduces its average daily output to 3 – 7 kWh/m². Since the infrared part is not utilized to produce electricity, conventional photovoltaic (PV) cells use only about half of the solar spectrum. Direct radiation flux is also necessary for solar Stirling engine (SE) to work efficiently (33%). The hybrid system can largely overcome these problems.

The design combines the PV and energy storage-integrated SE or thermal field emission (TFE) technologies in the same concentrating solar power (CSP) system, providing a great potential in terms of energy production per unit area.

A photon-enhanced gate electrode creates on the cathode surface an electrostatic field large enough to compensate space charge field and initiates TFE process. In the TFE cathodes with nano-structured surfaces, the current density can reach values close to the field emission limit.

The design of the electrodes is essentially based on nano-structured emission materials that were experimentally explored by the co-authors. In these experiments, efficiency of heat-to-electricity conversion was investigated and conditions for advanced nano-materials application for harvesting solar energy were found.
Solar installations of IPMS NAS of Ukraine (Kiev, IPMS NASU, building “D”)
A xenon high-flux optical simulator “Crystal-M” for nanostructure formation

The optical furnace demonstrates numerous advantages. Its versatility, rapid heating and cooling rates, ability to adjust temperature profile along each axes, maximum operating temperatures and environmental adaptability stand out among others. This technique can also be suitable for both conducting and non-conducting materials. Moreover, the light energy is one of cleanest energy sources available.
5. Nigel Boat
Domestic and Commercial concentrated solar power plant incorporating PV

Contact name: Nigel Boat
Country: England
Email: Nigelboat@hotmail.com
Telephone: +44 (0) 7739 55 2736

Our current field trials have proven to capture 40% of solar energy with further development enhancing it to 70% +

What challenge area is your project idea focused on for the SOLAR-ERA.NET Cofund Joint Call?

Expertise assistance required in
B) Advanced PV products and applications
C) PV system integration
D) CSP cost reduction and system integration

Please contact me with you CV or expertise details. Any facilities or laboratories who feel maybe of interest to us, to help develop our product further.
Previous experience
Year 2001 started with two ideas

One was commercialised, the other one the Solar project has been bubbling in the back ground the whole time until now.

Project one achievements:
Commercialised and self funded due to not being able to raise outside capital.

Major universities Oxford, Cambridge, Kingston, Anglia Ruskin and recognised institutions like the Building Research Establishment BRE used as required.

Commercialisation partnership offered to us by world’s largest chemical company but was turned down by us.

Lobbied Government and made it a Regulation, giving UK Government an additional Carbon Saving of 35% in 2014 regulation.

Only company in this market to receive Government backed money to supply the product for free or subsided to clients.

Two consecutive years been nominated and received gold award awards at the House of Commons for green innovation of this technology.

In house formulation and design of our vast product range, they are now Toll manufactured to our recipes and formula and shipped world wide.
Project two
The technology can be installed as a micro home PowerStation or easily up scaled into thousand of megawatts power plants.

We have built a prototype and installed a basic version of the technology which has been tested and gathering data for several years.

Currently capturing and storing 40% of solar energy per m² in real life application
With further development it can be enhanced to possibly 70% or higher.

Proven technology which combines photovoltaic and concentrated solar power into one product.

Due to being concentrated solar power it can be used night or day.

Proved to work from Antarctic to the equator.

Production cost are economical and electric KW prices are low that PV and other methods.

We require:

• Collaborative partners.
• Test Laboratories.
• PV manufacturers’ partners.
• Experts in the knowledge of heat transfer and extraction in different substances and materials or liquids and gases.

I’m looking for partners to assist with technical knowhow which is able to build a collaborative knowledge for finalising the project ready for commercialisation.

Due to the project being established already it is estimated that in a relatively short time with the right assistance and collaboration this product can be commercialised globally swiftly with the right partners..
6. Trevor Wakefield – Perfect Solar Company Ltd
EnviroPVtile
The integrated solar rooftile that can speak for itself
Contact details
Perfect Solar Company Ltd
Trevor Wakefield
UK
wakefield.trevor@gmail.com
+44 (0) 7943 699417
Manufacturer & Supplier of a Patented Light weight BIPV Roof Tile System .
www.greensustainableproductsco.com

We Seek a Commercial PV manufacturing Partner who can supply the module requirements for an exceptional developed PV Roof Tile for the future supply to both UK & International Commercial Trade .

• The Perfect Lightweight integrated BIPV Full Roof system delivering 150 watts & weighing less than 12 kilo’s per m2 .
• **Perfect Solar Company** have designed the perfect BIPV roof tile that incorporates with established sustainable Roof brand called Envirotile. There is no other Roof Tile system W/Wide that can match its proven performance. Suitability for supply is endless as it can be installed anywhere globally by semi skilled tradesman no matter what the climate. Already Proven & Tested to severe wind loads of 147mph from a roof pitch as low as 12.5 degrees.

• We require an established Solar manufacturing supply organization with existing routes to International markets who themselves recognize the benefits & advantages of adding a remarkable lightweight brand of Roof tile to their existing product portfolio that will be installed on a variety of multi type building structures for the future.

• **Perfect Solar Company** believe that it offers a product with huge market potential therefore it requires a company that itself can recognize the potential scope & vision for a commercial venture of this type.

- Keep presentation clear and concise by limiting to max 4 slides (remember there will be people from different countries listening) Presentations will be a maximum of 4 minutes to allow for a number of presentations within the time we have available.
7. Zayda Donaire - NEMATIA
Contact Details

• Organisation: NEMATIA
• Contact name: Zayda Donaire
• Country: Spain
• Email: comercial@nematia.com
• Telephone: +34 678 352 667

Organisational profile
NEMATIA is an engineering SME focused on plastic industry, founded in 2006. The activity in NEMATIA is mainly aimed at the renewable energy and automotive sectors. It is a Technology-Based Company established with private capital which offers advanced technical services in design and engineering, providing solutions of high-tech and high added value content, together with the maximum quality. Employees: 5

What challenge are is your Project idea focused on for the SOLAR-ERA.net Cofound Joint Call?

D) CSP cost reduction & system integration
Reflexis is based on a polymeric substrate and a specific configuration which overcomes the disadvantages and problems posed by glass mirrors and other existing alternatives in the market. It is a one-piece reflector, which can be attached to existing plants, or present combined optical configurations, impossible to get with current optical glass mirrors, reflectors which will allow that radically increase the efficiency in the use of solar resource.
High reflectance
self-healing polymer reflector

- Lighter than glass mirrors
- One piece set (robust)
- Tested manufacturing and high rate of production
- First surface mirror
- Allow the combination of several optical definitions
- Significant savings in CAPEX and OPEX

VALIDATION (TRL4):
- Greater reflectivity than the reference glass
- Self-healing abrasion protection
- Unbreakable (in operation conditions)
- Tightness tested (Salt Spray CASS Test)
We are looking for a Partner which help us to manufacture a scale 1:1 prototype of the new reflector, with any of CSP technologies, to get TRL7. Our project is in TRL4 (technology validated in lab), although each process of the mirror is done under validated industrial process, so its whole manufacturing process is feasible going to highest TRL6/7.
8. Philippe Stolz - Treeze Ltd.
treeze Ltd. – fair life cycle thinking Switzerland

www.treeze.ch

Philippe Stolz stolz@treeze.ch
+41 44 940 61 93

treeze Ltd. is an environmental consulting company with 25+ years experience in life cycle assessments (LCA) of energy systems.

Relevant projects:

• IEA PVPS Task 12 (ongoing): Environmental LCA of current PV technologies in cooperation with various partners (FirstSolar, NREL etc.)

• EC Product Environmental Footprint (PEF) Pilot of PV electricity (ongoing) in cooperation with FirstSolar, Total, SolarPowerEurope, Pvthin

• LCA of new PV technologies (Flexcell, micromorphous-Si)

Our project idea for the SOLAR-ERA.NET Cofund Joint Call focuses on:

Topics A – D: LCA of PV and/or CSP systems
LCA of PV and/or CSP systems

• We carry out environmental life cycle assessments (LCA) for your project

 LCA can be performed for manufacturing processes, PV and CSP products and entire electricity systems (Topics A – D)

• Quantify the environmental impacts of your product or process over the whole life cycle

 extraction of resources, production and use of the product, waste disposal, transport services

• Identify environmental hotspots and measures to reduce the impacts

• Compare the environmental impacts of your product or process with alternative ways of producing electricity

Partner(s)

• PV / CSP manufacturers, developers, owners, operators

 with access to data on material composition, energy consumption etc.

 and interest in the environmental performance of their product / process
9. Kerstin Täschner - Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Contact details
• Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
• Contact name: Dr. Kerstin Täschner
• Country: Germany
• Email: Kerstin.Taeschner@fep.fraunhofer.de
• Telephone: + 49 351 2586 - 376

Organisational profile
• research and development
• field: coating deposition technology and hardware in reactive pulse-magnetron sputtering
• offering: sputtering technology and hardware development, process control, coating development

Topic:
D) CSP cost reduction and system integration
Project idea

- **project idea:** large-area-beam splitter for simultaneous utilization of VIS and IR wavelength range in CSP systems

- **technology:** reactive pulse-magnetron sputtering, optical design: gradient index layers (rugate filters) → low loss, high environmental stability (heat, radiat. intensity,...)

exemplary specification:

Measured on glass:

- partners or expertise we would like to access for collaboration:
 development partner in the field of CSP – engineering/construction in need of customized coating implementation e.g. to combine VIS and IR range
10. Piotr Karwowski
Instytut Energetyki Odnawialnej
Contact details

- Organisation: Institute for Renewable Energy
- Contact name: Piotr Karwowski
- Country: Poland
- Email: pkarwowski@ieo.pl
- Website: ieo.pl

Organisational profile

Institute for Renewable Energy (IEO) was established in 2001. It’s an independent research group, and the first private research institute in Poland with a deep knowledge of the renewable energy issues: wind energy, solar energy, biogas, biomass, energy planning, ranging from politics energy and law, economic and financial analysis, and ending with the technical issues and design and widely understood prosumer energy.

IEO also has an extensive experience in participating as renewable energy technology and economic advisor for investors in the investment processes in the area of renewable energy implemented by the company and local governments.

Project: PV system integration

Research on new energy structure - DC-grid at the local level, to investigate their potential impact on energy supply reliability, economy and society.
The overall context of the project

- The number of PV micro-installations connected to the grid in Poland amounts to about 11,000.
- Connecting them to the DC-grid can bring benefits like increasing of efficiency (lower energy transmission losses) and reduction of the investment costs (without inverters).

Project idea
We would like to propose an option, which is addressed especially to residential and small industrial consumers and not yet popular in EU, to consider DC microgrids clustering municipalities, industrial and residential consumers.

It is therefore necessary to test such a new energy structure in order to investigate their potential impact on energy supply reliability, economy and society.
11. Ali Serpenguzel
Koç University Microphotonics Research Laboratory
Koç University Microphotonics Research Laboratory focuses its experimental research efforts on application areas such as microcavity physics, optoelectronic devices, optical fiber communication, silicon photonics, laser spectroscopy, and laser diagnostics. The state-of-the-art research encompasses the design, fabrication, characterization, and testing of novel photonic and optoelectronic devices and their applications in optical fiber communication and silicon photonics. Photonic and optoelectronic structures such as high quality factor optical microcavities as well as novel dielectric and semiconductor materials are used for the realization of these photonic and optoelectronic devices.

The research efforts are sponsored by Koç University, Yale University, Alcatel-Lucent Technologies, The Scientific and Technological Research Council of Turkey, The British Council, The European Office of Aerospace Research and Development, and The European Commission. The research laboratory is located at the Koç University Rumelifeneri Campus.

The main equipment includes fast pulse lasers such as neodymium yttrium aluminum garnet, dye, carbon dioxide, nitrogen, excimer, titanium sapphire, and continuous wave tunable semiconductor diode lasers (800-1600 nm), optoelectronic communication test and measurement equipment, optical spectrometers (300-3000 nm), optical tables, and various state-of-the-art optoelectronic and optomechanical equipment. Joint research efforts are conducted with Glasgow University, Strathclyde University, Essex University, Harvard University, and the Consiglio Nazionale delle Ricerche, Rome.

project idea focused on (A) Innovative and low-cost PV manufacturing issues
Innovative formation of PV layers (nonplanar shapes interacting with gain media)

Own Expertise

- optical microcavities and waveguides
- silicon photonics, integrated photonics

Required Expertise

- semiconductor optoelectronic device processing and manufacturing
- microfluidics, optofluidics
12. Przemysław Mroczkowski
Institute for Innovative Energy Development
Contact details
• Organisation: Institute for Innovative Energy Development
• Contact name: Przemysław Mroczkowski
• Country: Poland
• Email: p.mroczkowski@irie.pl

Organisational profile
✓ Institute on the law of Fondation
✓ Realization of educational and B&R projects
✓ Technical and economical analyzes
✓ Realization of investment projects
✓ Consulting for developers and investors interested in RES/micro-grid/algae field
✓ Acquisition of funds for projects from national and international sources

Challenges:
➢ Implementation of solar panels and seeking for innovative solutions for agriculture and industry
➢ Building local competences in solar field in cooperation with universities and partners from technology and industry
Project idea I

Hybrid/BiPV solar panels with micro algae floating inside vessels. Solar panels would be installed on ground or roofs ie. greenhouse, food processing, hall, factory.

This will reinforce development of innovative solar panels for industrial applications at the same time thanks to integration with energy consumer algae would have good conditions to grow all-year round.

We are looking for technology provider of high quality hybrid panels with transparent vessels suitable for algae cultivation.

We can provide suitable locations for the project, support of leading agricultural university, local recognition of the solar market, project management.

Project idea II

BiPV panels with different transparency would be placed in rows among specified specimens of plants with different spaces between the rows. This will cause various sun exposition to the plants.

Which BiPV panels are the most suitable for plant cultivation, if partial shadow is beneficiary or not for plants will be verified.

Some plots will be LED light lightened – estimation of LED light as growing factor during night. Energy storage will be included in the project.

We are looking for technology provider of high quality BiPV panels

We can provide suitable locations for the project, support of leading agricultural university and project management.
Questions?

Slides will be sent around after webinar

For more information see http://www.solar-era.net/

Or

Contact your National Contact Person

<table>
<thead>
<tr>
<th>Country / Region</th>
<th>Organisation (Funding Organisation or Contact Point)</th>
<th>Contact(s) and Domain(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Austrian Promotion Agency (FFG)</td>
<td>Anila Hipfinger: anila.hipfinger (at) ffg.at, +43 5 7755 5025</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Research Promotion Foundation (RPF)</td>
<td>Ioanna Sergidou Loizou: loizou (at) research.org.cy, +357 22205047</td>
</tr>
<tr>
<td>France</td>
<td>Agence de l'environnement et de la maîtrise de l'énergie (ADEME)</td>
<td>Manon Gerbaud (for CSP): manon.gerbaud (at) ademe.fr, +33 1 47 65 21 49</td>
</tr>
<tr>
<td>Germany</td>
<td>Projekträger Jülich (PL)</td>
<td>Geschäftsbereich Energiesystem: Erneuerbare Energien/Kraftwerks technik, Fachbereich Photovoltaik (ESE 1) Harmann Bastek: h.bastek (at) fz-juelich.de, +49 2461 61 4849 Dorothea Brockmann: d.brockmann (at) fz-juelich.de, +49 2461 61 96656</td>
</tr>
<tr>
<td>Netherlands</td>
<td>RVO</td>
<td>Otto Bernsen, otto.bernsen (at) rvo.nl</td>
</tr>
<tr>
<td>Poland</td>
<td>NCBR</td>
<td>Magdalena Garlińska: magdalena.garlińska (at) ncb.gov.pl, +48 22 39 07 267</td>
</tr>
<tr>
<td>Spain</td>
<td>i) Centre for the Development of Industrial Technology (CDTI) ii) Ministry of Economy and Competitiveness – Agencia Estatal de Investigación (MINECO-ABI)</td>
<td>i) Gabriel Barthelemy: gabriel.barthelemy (at) cdti.es +34 91 5815707 ii) Severino Falcón: severino.falcon (at) mineco.es, +34 91 603 79 59</td>
</tr>
<tr>
<td>Sweden</td>
<td>Swedish Energy Agency (SWEA)</td>
<td>Pierre-Jean Rigola: pierre-jean.rigola (at) swedishenergyagency.se, +46 16 544 21 91 Tobias Walla: tobias.walla (at) swedishenergyagency.se, +46 16 544 20 54</td>
</tr>
<tr>
<td>Switzerland</td>
<td>i) Swiss Federal Office of Energy (SFOE) ii) NET Nowak Energy & Technology Ltd. (NET)</td>
<td>i) Stefan Oberholzer (for CSP and PV topics): stefan.oberholzer (at) bfe.admin.ch, +41 58 465 89 20 ii) Stefan Nowak (for PV topics): stefan.nowak (at) netenergy.ch, +41 26 494 00 30</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Innovate UK</td>
<td>Amy Oswin: amy.oswin (at) innovateuk.gov.uk for eligibility Alice Goodbrooks: alice.goodbrooks (at) innovateuk.gov.uk for scope</td>
</tr>
<tr>
<td>Turkey</td>
<td>Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)</td>
<td>Kaan Karaöz: kaan.karaöz (at) tubitak.gov.tr, +90 312 4685300 (TEYDEB)</td>
</tr>
</tbody>
</table>