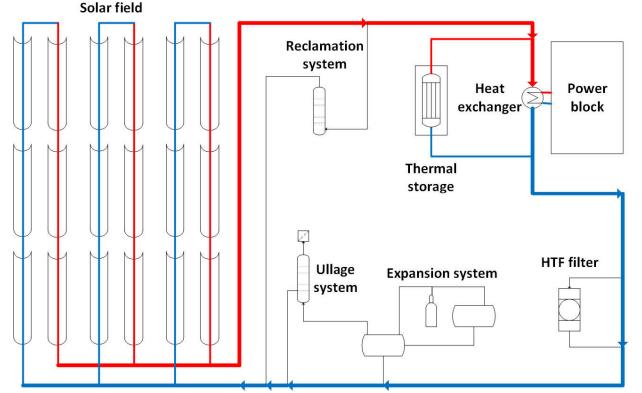
HyConSys - Hydrogen Control in Solar Thermal Parabolic Trough Heat Transfer Fluid Systems

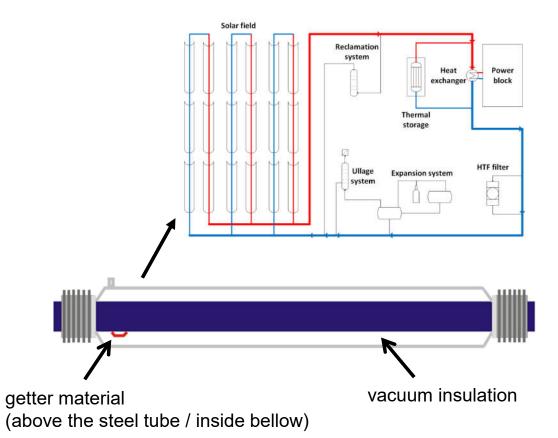
Wissen für Morgen

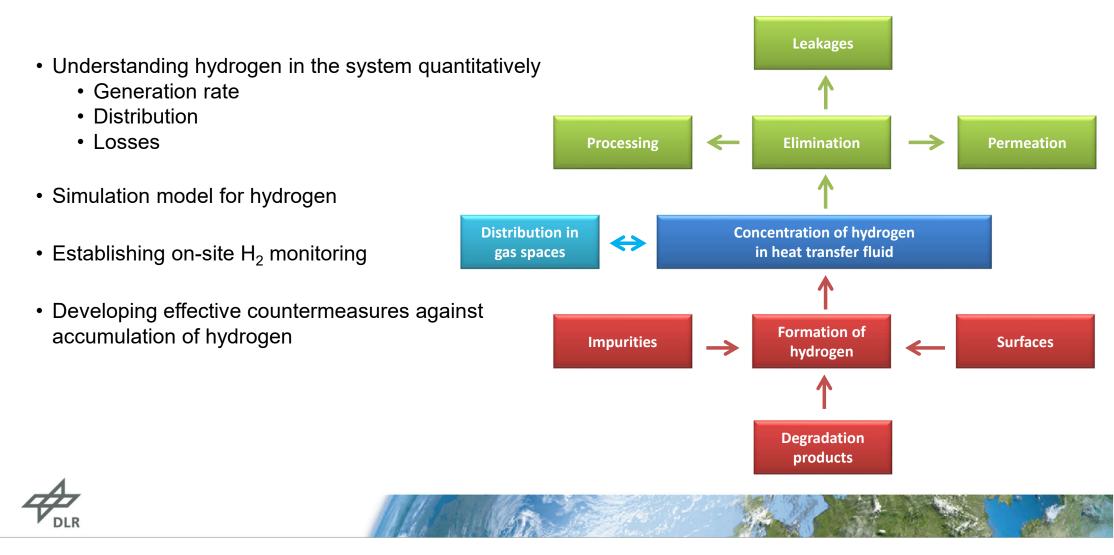
Christian Jung Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) Linder Höhe, D-51147 Köln <u>christian.jung@dlr.de</u>

Outline

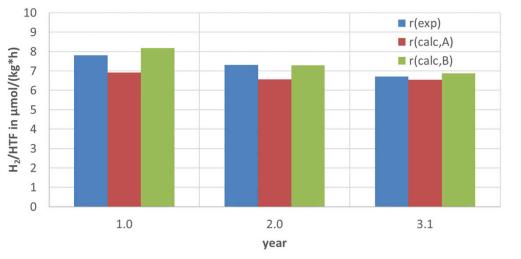

- Scientific and technical challenges
- Key outcomes, results and benefits
- Dissemination and exploitation
- Experiences gained in transnational set-up
- Critical factors and lessons learned

Solar Thermal Parabolic Trough Systems – A Short Overview


- Solar power is collected with mirror & receivers (heat collecting elements, HCEs)
- Heat transfer fluid (HTF) transports heat to the power block or the thermal storage (cold HTF ~ 293 °C, hot HTF ~393 °C)
- HTF is composed of biphenyl (BP) and diphenyl oxide (DPO)
- BP/DPO needs some processing due to slow decomposition at 393 °C
 - Ullage low boiler removal
 - Reclamation high boiler removal
 - No specific gas removal


Hydrogen – A Challenge for Vacuum Insulations of Solar Receivers

- Heat collecting elements (HCE) in solar field
 - Intact vacuum insulation at 0,001 mbar
 - 250 W/m heat loss at 400 °C (for PTR-70 receiver)
 - Compromised insulation with 0,3 mbar hydrogen
 - 450 W/m additional heat loss at only 350 °C
- Hydrogen limit in heat transfer fluid
 - 0,3 mbar effective pressure
 - ~0,8 µmol/kg
 - 3 g hydrogen in 2000 t HTF!



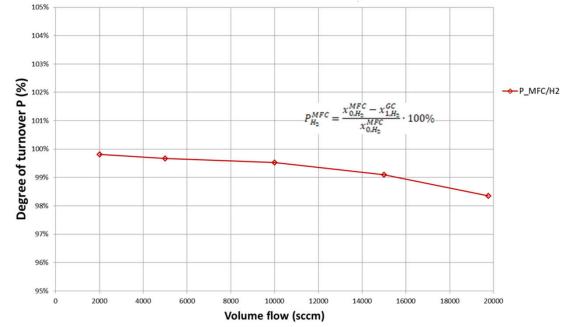
Scientific and Technical Challenges in Hyconsys

Key outcomes, results and benefits - Hydrogen Formation

- · Kinetic data derived from lab studies
 - Enhanced hydrogen formation rate accessible from kinetic model and chemical analysis of HTF
- Hydrogen formation rate validated over three years with data from Spanish CSP plant
 - Less than 5% deviation using specific kinetic parameters
 - Less than 10% deviation using generalized parameters

Specific hydrogen formation at 393 °C of used HTF from a Spanish CSP plant

Key outcomes, results and benefits - Hydrogen Monitoring and Modelling


- Monitoring of hydrogen concentration in a Spanish plant over three years
 - Annual peak in summer
 - Effect of simple countermeasures confirmed
- Equipment for hydrogen monitoring developed and qualified over 28 months
- · Model developed and validated with monitoring data
 - Trends and levels are satisfactorily predicted
 - Specific hydrogen removal techniques and dynamic processes to be embedded in follow-up project

Key outcomes, results and benefits - Hydrogen Removal

- Hydrogen removal with nanostructured catalyst developed
- Complete hydrogen removal confirmed in presence of HTF vapor
- Data for demo study prepared

Degradation of 2000 ppm hydrogen/1000 ppm oxygen at 220 - 142 °C

Dissemination and exploitation

- Simulation model for hydrogen in parabolic trough systems
 - Basic version available for optimization studies
- Equipment for on-site monitoring available
 - Demonstration within follow-up project
- Nanostructured catalyst for hydrogen removal qualified
 - Demonstration within follow-up project
- Follow-up project Hyrec³ since May 2021
 - Only with German partners due to lack of opportunity within SOLAR-ERA.Net
 - Demonstration unit for catalytic removal in a CSP plant
 - Lab studies regarding data on hydrogen distribution
 - Additional features for simulation model
 - New developments for testing hydrogen saturation

Experiences gained in transnational set-up

- Cooperation with Spanish partners was intensive and efficient
 - Regular online meetings and exchange of data via TeamSite
 - Annual meetings in Spain
 - Associated partner in follow-up project (without funding)

Critical factors and lessons learned

- Project acquisition
 - Three application steps
 - Pre-proposal, full proposal, national proposal
- Project management
 - Extra reports to Solar-ERA.Net
 - National projects run independently
 - Timelines of projects can be different

Acknowledgements

The authors would like to express their gratitude for the public funds that were granted for the research project *Hydrogen Control in Solar Thermal Parabolic Trough Heat Transfer Fluid Systems* (Hyconsys) by the Federal Ministry for Economic Affairs and Energy (BMWi) of Germany and for the support by SOLAR-ERA.Net.

SPONSORED BY THE

Federal Ministry for Economic Affairs and Energy

