

Academics

Industry

Silicon / TCO thin film deposition tools

PLASMA PROCESS EQUIPMENT

Insights, outcomes and results - 28 September 2023

Fraunhofer

fer Fraunhofer Institute for Solar Energy Systems ISE

Martin.Bivour@ise.fraunhofer.de

- Scientific, technical, commercial challenge(s) addressed
- Key outcomes, results and benefits
- Experiences gained in transnational set-up
- Critical factors and lessons learned for future successful transnational R&I projects

TeraWatt Era: Innovation of PV Landscape to Enable Massive Grows

Technological Innovation for Sustainable Production of Solar Cells

Key factors (amongst others) are

- High conversion efficiency
- Efficient and sustainable use of materials
 - Metals for conductors / electrodes

Silicon Heterojunction Technology (SHJ)

Innovations Needed for the Electrodes to Become a Mainstream Technology

Key factors (amongst others) are

- High conversion efficiency
 Silicon heterojunction cells
- Efficient and sustainable use of materials
 - Metals for conductors / electrodes¹⁻³

SULAR-era.ne

Insights, outcomes and results - 28 September 2023

Silicon Heterojunction Technology (SHJ)

Innovations Needed for the Electrodes to Become a Mainstream Technology

Key factors (amongst others) are

- High conversion efficiency
- Silicon heterojunction cells
- Efficient and sustainable use of materials
 - Metals for conductors / electrodes¹⁻³
- → Ag grid electrodes
- Indium based TCOs
- → Sometimes Bi for interconnection

Indium - Current SHJ Techn. would only be a Niche Product in TeraWatt-PV

Indium Supply, Competition with other Markets / Devices, Price, End-of-Life Recycling, ...

Insights, outcomes and results - 28 September 2023

Indium-lean and Indium-free SHJ cells

WP	Lead	Title
1	<u>ISE</u>	Administration
	1,1	Coordination
	1,2	Reporting
2	<u>UT</u>	TCOs
	2,1	Indium-free/high mobility TCOs screening
	2,2	Compatibility with mass production
	2,3	Optimization indium-free/indium TCOs
3	<u>CNRS</u>	Silicon thin films
	3,1	Adaption to optimum TCO pocess conditions/temperature stability
	3,2	Low Si-TCO contact resistance
4	ISE	Device integration
	4,1	Implementation/optimization of promising materials in device structure
	4,2	Annealing/hydrogenation of TCOs
	4,3	Thermal/long-term stability of TCO bulk and interface properties
5	ISE	Solar cell and module processing
	5,1	Small-volume processing and mini-module integration
	5,2	Module stability
6	<u>CNRS</u>	Simulation and Characterization
	6,1	Evaluation of optical/electrical TCO losses and limitations
	6,2	Advanced material and interface analysis
	6,3	Loss analysis of solar cells and modules
7	ISE	Economical evaluation
	7,1	Evaluation of preselected promising cell designs

Insights, outcomes and results - 28 September 2023

Proof-of-principle TCO / Indium-free SHJ cells¹

• Current industrial metallization scheme identified as one limitation

TCO multi layers²

- Effective means for In-lean SHJ devices
- In-free bulk TCO layer sandwiched between thin In-based layers

Indium will become a challenge for SHJ technology once it approaches mainstream

- In-lean SHJ devices a viable short-term solution
- <u>More</u> disruptive <u>innovation</u> needed for significant <u>sustainable</u> <u>production</u> volumes

Low TRL <u>material science</u> = high TRL <u>upscaling</u> \rightarrow In-free TCO's for large scale PV deployment

- Scientific, technical, commercial challenge(s) addressed
- Key outcomes, results and benefits
- Experiences gained in transnational set-up
- Critical factors and lessons learned for future successful transnational R&I projects

Covid brough along some real challenges for the consortium

 National and trans-national agencies have been very supportive

SOLAR-ERA.NET / CTEP

- Unique platform to foster EU-wide (+partners) collaboration and research
- Absolutely vital / efficient means to accelerate the energy transition in EU+
- Practical benefits over "classical" EU calls (HORIZON,)

Insights, outcomes and results - 28 September 2023

Thank you for your attention!

Contact

Martin Bivour Head of team passivating contacts Photovoltaic – Research

+49 761 4588-5586 martin.bivour@ise.fraunhofer.de

Bundesministerium für Wirtschaft und Klimaschutz